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Field theories without fundamental gauge symmetries

By H. B. NIELSEN

The Niels Bohr Institute, University of Copenhagen and NORDITA,
Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
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By using the lack of dependence of the form of the kinetic energy for a nonrelativistic
free particle as an example, it is argued that a physical law with a less extended range
of application (non-relativistic energy momentum relation) often follows from a more
extended one (in this case the relativistic relation) without too much dependence on the
details of the latter. We extend the lesson from such examples to the ideal of random
dynamics: no fundamental laws are needed to be known. Almost any random funda-
mental model will give the correct main features for the range of physical conditions
accessible to us today (energies less than 1000 GeV) even if it is wrong in detail.

This suggests the programme of attempting to ‘derive’ the various symmetries and
other features of physics known today from random models at least without the feature
to be derived.

As an example, D. Forster, M. Ninomiya and myself ‘derive’ gauge invariance in
this way (Forster et al., Phys. Lett. B 94, 135 (1980)), and show that it has at least a non-
zero probability for being effectively a symmetry. In fact we show that a certain non-
gauge-symmetric lattice model has zero mass photons for a whole range of its
parameters, so that it is not necessary to fine tune it to get massless photons. It comes
about by means of a formal gauge symmetry achieved by introducing a superfluous
number of field variables.

The achievements in our programme of random dynamics up till now are briefly
reviewed. In particular, Lorentz invariance may be understood as a low energy
phenomenon (S. Chadha, M. Ninomiya and myself).

An analogy between the development of physics as one goes to lower and lower
energies and that of living species through the history of the Earth is put forward.
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1. INTRODUCTION

The work that I shall present is part of an ambitious programme of random dynamics in which,
in collaboration with various colleagues, I attempt to derive the laws of nature as we know them

from fundamental laws that are assumed to be random and thus extremely complicated. (For a

— recent review see Nielsen 1983). I shall give as an example a piece of research work by D. Forster,
< S M. Ninomiya and myself (Forster ef al. 1980) in which we in a sense derive a symmetry law:
S ~ gauge invariance (the same work also has been done by Shenker (1980) in an unpublished
e, g research report).

SSN @) The picture of physics which I have in mind in this project of random dynamics is the following.
E 9) There exists some system of fundamental physical equations (or a fundamental action or the

like) governing the time development of some fundamental fields. It may be difficult to say
exactly in what terms it should be formulated, and it is part of my point that it may not be
important to know this. Contrary to the speculation — that many physicists believe — that
fundamental physics is simple, these fundamental equations are assumed here to be extremely
complicated. Because of the high degree of complication assumed of the fundamental equations
(the fundamental laws of nature we could say) we have to give up any hope of guessing their
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262 H. B. NIELSEN

exact form. Our best hope is, then, to guess a very large class of possible fundamental equations
(or actions) and a probability measure over that class. It would then make sense to assume that
the actual fundamental equation system (or action or whatever) is randomly chosen from that
class in the sense that after having added assumptions about how to connect the fundamental
fields (degrees of freedom) to experimental observations one would find agreement with experi-
ment within statistically expected accuracy.

At the present stage of science we have a series of regularities and theories that are well tested
in some regions of application (energies per particle less than those corresponding to highest
accelerator energies).

higher
energy
smaller
distance

Ficure 1. The quantum staircase illustrating how the various branches of physics — corresponding to the steps in
the staircase — may be roughly considered as characterized by various scales of energy or inverse length
(we put Planck’s constant 4 and ¢ equal to unity).

These regularities, such as the principle of relativity, may be called laws of nature, but we do
not think of them as fundamental in the picture of random dynamics. Rather they should be
derived in some limit as consequences of the fundamental laws of nature (i.e. the fundamental
equation system or action or whatever) which are supposed random. This means that the
success of the random dynamics idea hingesupon the possibility of deriving the ‘ non-fundamental’
laws of nature from a major part, thatis a part with high probability, of the complicated funda-
mental equation systems in the assumed large class.

In practice we concentrate on explaining the (presumed not so fundamental) regularities (or
laws of nature) already known. But now instead of attempting to derive them from a totally
random system of equations or actions we would in practice take a system (a model) in which
several regularities other than the one to be derived are already present. Ifit is possible to derive
a regularity from a random action without any regularities it is normally easier to do so if one is
allowed to use some principles that are already known.

As we progress we may hope to use successively fewer and fewer known principles, and hope,
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at the end of a long series of calculations, to abandon any assumption about the existence of
time or that the dynamics should be given by a Lagrangian. We may hope to go that far some day
but it is difficult to imagine even in which language to formulate a model without time and
without an action principle.

It may not be good to use the phrase ‘laws of nature’ since it means two things: (1) a regularity,
a principle such as rotational invariance, the principle of relativity, or the linearity between
energy and momentum squared for a non-relativistic free particle; (2) a complete model of
describing in detail the dynamics for a branch or the whole of physical phenomena.

Inboth of these definitions the physical law can be either fundamental or only (approximately)
valid under some limited range of physical conditions (for example when no particle has more
energy than 1 TeV).

According to the hypothesis of random dynamics there may exist a fundamental law of nature
in sense (2) of a model although it is so complicated that we shall not attempt to guess it. In this
sense of a physical law (a dynamical model) there is no contradiction in taking the law to be
random. With the other meaning (1), that of a regularity, a random law would hardly make
sense, but according to ‘random dynamics’ there should not exist any fundamental law of nature
in this sense.

Many non-fundamental laws of nature in sense (1) (of regularities) are known. In sense (2)
(of a model), the standard model, i.e. QCD combined with the Weinberg-Salam-Glashow
electro-weak gauge model, is one that presumably explains all we know today except for
gravitational phenomena.

In the following section I shall put forward the possibility that the fundamental laws of nature
are random and so complicated that we could not attempt to guess them, using as an example
a derivation of the kinetic energy of a non-relativistic particle.

In §3 we go to a lattice field theory model without any a priori gauge invariance. Nevertheless,
it turns out that one can change the notation so that a formal gauge symmetry arises. In spite
of this symmetry being formal it turns out that there is some chance that it can provide an
explanation for the light quantum (the photon) being massless, a phenomenon due to gauge
invariance.

Finally, in §4 I present a very condensed list of what we have achieved or are about to achieve
in the random dynamics programme and give concluding remarks in §5.

2. THE PROGRAMME OF RANDOM FUNDAMENTAL LAWS OF NATURE

In the random dynamics programme we wish to derive the regularities known today, such as
Lorentz invariance and gauge symmetry, but which we suppose not to be fundamental, from a
more fundamental model. We must admit that we do not know the more fundamental model but
rather we shall choose a large class of such models and a probability measure on the latter; then
we assume that a random model is valid.

Now I would like to illustrate how a regularity — the linearity between momentum squared p2
and energy E(p) for a free non-relativistic particle — can arise in a limit, that of low velocity,
in a case where we also know the more broadly valid model, which in this case is special relativity.
We consider this example of random dynamics, which could have been done before the advent
of special relativity, both for illustration and to-argue a case where we know, i.e. after Einstein,
that the idea of a derivation in accordance with the random dynamics programme is indeed
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correct. The relation between energy £ and 3-momentum p for a particle according to the special
theory of relativity is shown in figure 2,

E = (p2+m2)} (2.1)

in units wherein the velocity of light, ¢, equals one. A research project of the random dynamics
type which could be imagined before Einstein would be to ‘derive’ the non-relativistic energy

momentum relation
E=p?/2m or Ecxp2 (2.2)

E=p?/2
Y p%2m

E(p?|

{ A SN RN

pe
—

pZ

low momentum range

Ficure 2. The relation between energy and (3-)momentum squared for a free particle. In non-relativistic physics
(nuclear physics say) we only have access to the small momentum region where we can approximate the
curve by a portion of a straight line.

Here m is a constant, the mass. This could be done from a ‘random model’ in which
)

E=f(p), (2.3)

and the function fis the object that is chosen randomly out of a large class of functions, say the
analytic ones.

Even though in the derivation of £(p) oc p? we use a random model that turns out later to be
the special theory of relativity, it does not mean that, if I had done this last century, I should have
necessarily believed that this random model was the most fundamental one. It might well be
that what is used at one level as fundamental is just an approximation at another level.

We could argue from the principle of translational invariance that the energy E of a free
particle cannot depend on the position but only on the momentum p. We could further argue
from rotational invariance for it being only a function of p? and thus of the form (2.3). It is
typical in practice in research work in the random dynamics programme to assume some already
known principles although one must of course avoid assuming what we want to ‘derive’.

Almost any analytic function f(p?) would have a Taylor expansion

S(P?) =f(0) +f*(0) p* (2.4)
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valid for small p, and apart from the unimportant constant f(0) (if the particle is not annihilated)
it has the form (2.2) if we identify
£1(0) = 1/2m. (2.5)

When I say that ‘almost’ all analytic functions provide the same form for the energy for low
momentum as the non-relativistic expression (2.2), I have in mind the possibility that the Taylor
expansion coefficient '(0) could be zero. But if one imagined that the energy momentum law
(2.3) was described by a randomly chosen function £, it would with a reasonable probability
distribution, be very unlikely for f’(0) to be exactly zero. If one has a real valued random
variable, such as f’(0) would be if the function f were random, and it has a smooth probability
distribution, the probability for it taking any special value, e.g. f'(0) = 0, is zero; i.e. itis unlikely
for it to take any given value specified in advance. We may say that it is unlikely that /(0) should
have the fine-tuned value zero.

We thus see that the specific form (2.1) is not important for ‘deriving’ the low momentum or
low velocity form. In fact an essentially random functional form for f would suffice.

We have here seen an example of a situation that often occurs. Details at the more fundamental
level are not so important for effective physics in a corner (of low energy, say).

Thus it may be more important to assume in which corner some experiments are done than
what are the fundamental equations. This makes the separation of experiment and theory less
easy. See Eddington (1946); Slater (1957).

3. A LATTICE FIELD THEORY MODEL WITHOUT GAUGE INVARIANGE

As a ‘modern’ example of a random dynamics derivation we shall consider how Férster et al.
(1980), and independently Shenker (1980) effectively obtained gauge symmetry.

We consider electrodynamics (Maxwell’s equations) formulated in terms of the four potential
Ar(x) = (D(x), A(x)) so that the second rank antisymmetric tensor F,,(x) composed from the
electric field E(x) and the magnetic induction B(x) is written

F/w(x) = a,uAv(x) '—avA/t(x)5 (31)
where 0, = 0/dx~. (3.2)
See, for example, Bjorken & Drell (1964) for notation. One set of Maxwell’s equations,
0, Fr(x) = j(x), (3.3)
is then given by extremizing the action
§= J — 1, (x) Fo(x) dix +JAﬂ(x) () dix, (3.4)
considered as a functional of 4,, while the remaining set of Maxwell equations
0,F,,(x) +0,F,,(x) +0,F,,(x) = 0, (8.5)

follows alone from the form of (3.1). The gauge symmetry is the invariance of the action (3.4)

under the replacement
4, (%) > A4,(%) +8,A(%), (3.6)

where A(x) is an arbitrary smooth real function defined on space-time. (Of course the four
current j#(x) should be conserved, 9, j#(x) = 0.)
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The existence of this symmetry may be taken as the reason for the mass of the photon being
zero. In fact adding a term
f%mﬁAﬂ(x) Ar(x) dx, (3.7)
to the action S would spoil the invariance under the gauge substitution (3.6), but this term is just
what would give the photon a mass m,.

Intuitively one thus expects that in order to obtain a model showing a zero mass photon it is
necessary to fine-tune in the sense of choosing a very special combination of values for the par-
ameters of the model. For example one would expect that the parameter m, should be zero, a very
special value. One would think that such fine-tuning is characteristic for any model that has
some symmetry.

But surprisingly enough we have found that there are several models in which symmetries do
occur without fine-tuning. So the intuitive argument that a symmetry cannot appear without
the fine-tuning of parameters seems to be circumvented in some cases.

In fact we (Forster ef al. 1980) have considered a model that could be called ‘U(1)-lattice
electrodynamics without a priori gauge symmetry’ and found that in spite of this model not
being invariant under a gauge symmetry when looked at superficially we can introduce one
formally and even obtain from it a physical effect, the masslessness of the photon. This model
can be crudely described as the result of putting on a lattice, in a naive way, electrodynamics
with a photon mass term corresponding to the action being (3.4) plus (3.7) (the second term in
(8.4) being considered a source term and therefore neglected). ‘Putting on a lattice’ means
constructing a model in which the space(-time) continuum is replaced by a lattice of points, so
that one includes, say, only those points (events) that have integer coordinates, in terms of a
unit of length a called the lattice constant. Then the fields in the lattice field theory are only
defined on the included points. Often though — as in the model we consider here — it is more
elegant to let the field be defined on the links. The links are (see figure 3) the pieces of line
connecting two neighbouring points, with integer coordinates, i.e. two points having three out
of their four integer coordinates equal while one coordinate deviates by one lattice constant unit
(e.g. x# and x” + 0% a). With the approximation that the lattice constant is small, the link has a
rather well defined position x# in space—time and it further has a direction along one of the four
axes, let us say the x#-axis. We can then introduce in the ‘naive continuum limit’ a connection
between the 4,(x*)-potential and the variables U(e—e) of the model that are defined on the
links and take complex values restricted to being of unit norm

U(e—e)eU(1) = {zeC |z| = 1}. (3.8)
This connection is the relation
U(E—& %) = exp (ied,(x*)a) (e s the electric charge quantum). (3.9)

A technical detail is that we keep the time coordinate purely imaginary before going to the
lattice.
The ‘U(1)-lattice electrodynamics without a priori gauge symmetry’ is defined by its action

§ =L Relg+rEReUle—s) (3.10)

where the summation 2 runs over all the links while 2 runs over all the plaquettes, the unit

squares formed from four neighbouring links. The plaquette variable Ugis.defined for each
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plaquette as the product of the four variables U(e—e) associated with the four links making
up the plaquette in question. Here one should use the convention of associating the U(e—e)
variables to oriented links in such a way that switching the orientation of the link corresponds to
taking the inverse of the variable

UE¥) = [U(%-2)1, (3.11)
then e -
ve=u(i_hu_ hu( Hudh (3.12)

is the product corresponding to the succession of oriented links around the edge of the plaquette
1. The dotted lines in (3.12) just symbolize the other three sides of [] than the one in question.
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U,(e=3)
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! x4 ofl)
U(xOIx;i-e ) D ——
x2

!

FiGUuRE 3. Symbolic drawings of a lattice model. In (a) we illustrate the fundamental variables U(e—-e), in
() the variables in the formulation with superfluously many variables Uy,(e— -8) and £2,(+). The lattice
should actually be 4-dimensional but has for simplicity been drawn as being 2-dimensional.

Expanding the action in a Taylor expansion to second order in ¢4,(x*) a after insertion of
(3.9), neglecting constant terms in the action and using the approximation of the lattice constant
being small so that for example

a0, A,(xf) = A,(xP +adf) — 4,(x), (3.13)

we obtain in this (naive) continuum limit the action
S = [d%(— 32 F,,(x) Fr(x) — (ke [2a?) A,(xP) A*(xP)); (3.14)
so naively it corresponds to a massive photon model. (Identify # = 1/(2¢%) and m} = «/(2fa?).)

Also, there is no gauge symmetry under which the reasonable way would be to put the gauge
transformation (22) on the lattice

UELY) > A ) URSY) Alye-) ™ (3.15)
because the term /f.g.Re U(e—e) in the action (3.10) is not invariant under this transfor-
mation (3.15). Here in the naive continuum correspondence

A(xP-) = exp (ieA(x)). (3.16)

Only if « is zero, or at least some specific value, one would expect to find that the photon mass
calculated in this model would be zero even when quantum mechanical effects are taken into
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account. However, according to calculations done by Fradkin & Shenker (1979) and by Banks
& Rabinovi¢i (1979) this is not so. Rather there is a whole range of values for the parameters
and « of the model for which there is a massless photon. Itisin fact sufficient that « is smaller than,
and f larger than, some critical values. If we think of the model in analogy with an instrument
with buttons by which the values of £ and « are tuned, it is not necessary to fine-tune them to get
a zero mass photon (like an automatic frequency control on a radio may make the most accurate
fine-tuning superfluous).

The first step in seeing this surprising result is to argue that we can in fact introduce a gauge
symmetry into the model in a rather artificial manner.

The trick is to write the model in terms of an unnecessarily large number of field variables:
U, (e—e) defined on the links just like the original variables U(e—e), and 2,(-) defined on
the sites -, i.e. the points of the lattice. Both U, (e—e) and £,(+) are norm unity complex
numbers like U(e—e). Indeed we write

UE-Y) = Qu(xe-) U @) Qnlyre) (3.17)
There are now infinitely many choices of the fields £,(+) and U, (e—e) which give the same
field configuration for the fundamental field U(e-—e) and thus one may transform around the
former without changing the original field variables U(e—s). In fact, one has invariance
under the formal gauge symmetry

Uh(@ed’) > An(x# ) Uy @) An(y-) 7 (3.18)

(w0 +) > Ly (w0 +) Ap(x0-) 7, } .

where A,(+) is the gauge function, like A(+) in (8.15), i.e. a norm unity complex function on the
sites. But it is still surprising that a symmetry, which is as (3.18) purely due to a notation with
extra many variables, can ensure a physical result, the masslessness of the photon for a whole
region, a phase, of (f, k)-combinations.

Essentially the way this comes about is that the site-defined field £, (- ) has very strong quantum
fluctuations when « is small enough. It can be shown that there are no long range correlations in
0,(+) in this case, so that the £,(-)-field can be ignored as far as low energy or long distance
properties of the model are concerned. Then it becomes natural instead of (3.9) to use the
identification Uy Mwsﬁ) — exp (ied,(+))
and one would then have gauge invariance (3.6). The mass term (3.7) will be forbidden and the
masslessness of the photon be explained.

How exactly the dynamics of the model work might be complicated to see. The important
point is that even with arandom choice of (3, k) there is a finite non-zero probability for obtaining
a zero mass photon electrodynamics even with a gauge symmetry, although the latter is from the
point of view of the fundamental model introduced just by notation and thus only formal.

This is a consequence of the very reliable estimates of Fradkin & Shenker (1979), Banks &
Rabinoviti (1979) and by ourselves (Forster et al. 1980) and can be tested on a computer (see
Ranft et al. 1983).

One may of course ask if we have ‘derived’ the Maxwell electrodynamics with its zero mass
photon if it only appears with finite (non-zero) probability. I think though that one just has to
imagine that the fundamental model should consist of several (probably interacting) sets of link
fields of the type described and then most likely some of them would produce massless photons.
Then we might instead have the problem of why we got only one of them, a question on which
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we have some premature speculations in a model in which we do not at first include translational
invariance.

4, ACHIEVEMENTS OF RANDOM DYNAMICS

Towards the end, let me mention briefly more progress that we have made or are making in
the programme on random dynamics: in fact, Antonianidas et al. (1983), and Iliopoulos et al.
(1981) (see also Iliopoulos 1981) have an alternative way of deriving gauge symmetry. They use
the renormalization group and find that in a model with no gauge invariance at high energy as
one restricts oneself to lower and lower energies and momenta, gauge invariance becomes more
and more accurate but never exact. Their model deviates from ours by having no lattice and they
are not allowed to introduce a photon mass term but only certain other gauge symmetry breaking
terms.

The same method of renormalization group calculations was used by Chadha & Nielsen
(1982) and by Ninomiya & Nielsen (1979) to show that for field theories with gauge symmetry
already assumed, Lorentz invariance (including rotational invariance) if not valid, is however
more accurately satisfied the lower the energy and momentum at which it is studied.

However, I tend to favour an explanation for Lorentz invariance which M. Lehto, M. Nino-
miya and I are working on, and which is analogous to the method sketched in the foregoing
section. In fact, one may consider gravity as a sort of gauge theory where it is either the Lorentz
invariance or translational invariance or both that is gauged. If a theory of gravitation is then
obtained without fine-tuning, we will also get Lorentz invariance in the neighbourhood of a
space~time point as a side result.

In connection with non-Lorentz invariant models, Chadha and myself (Nielsen 1977, 1978)
also find that a space—time with three space and one time dimensions is singled out. A fermion
will have much smaller velocities in any further dimensions.

My work with I. Picek (Nielsen & Picek 1982 4, 4) is more phenomenological seeking possible
deviations from Lorentz invariance, i.e. deviations from the principle of relativity, and thus does
not strictly speaking belong to the programme of random dynamics. I should like to mention
here that there is an experiment by Aronson ¢ al. (1982) showing that the parameters of the
KO-K© system in the beam energy range 30-110 GeV are slightly energy dependent, meaning — if
taken seriously — that Lorentz invariance is broken. Since it is only a few standard deviations of
relativity principle breaking we should be cautious.

Lehto ez al. (1982) also considered a generalization of electrodynamics with the 4,(x*)-potential
replaced by an antisymmetric tensor ‘potential” 4,,(x¢) = 4,,(x¢), and ‘derived’ the probable
existence of a massless particle analogous to the photon.

In all these investigations quantum mechanics is a very important assumption.

However, S.Chadha, C.Litwin and myself (see Nielsen 1978, 1981) have argued that a
random differential equation for the time development of a point in a high dimensional space is
likely to approach a fixed point, become approximately linear, and thus be interpreted as the
Schrédinger equation. This gives hope of even quantum mechanics resulting from a limit, that
in which a long time has elapsed. However, this only resulted because we used as random velocity
fields Fourier series with a finite number of random coefficients and these series had a lot of zeros.
Taking random differentiable functions, there is only one set of measure zero of motion with a
fixed point so that our ‘derivation’ of quantum mechanics is incorrect with the ‘correct’
measure (we are grateful to the referee for this comment).
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Also it should be mentioned that the discrete symmetries, parity, charge conjugation and time
reversal of strong and electromagnetic interactions are well understood in the standard model
and that isospin and the old Gell-Mann SU (3) are explicable if one just adds the assumption
of the quark masses being small (Weinberg 1979, 1981, 1982; Zee & Wilczek 1979).

Attempting to get details about the standard model N.Brene and I (Brene & Nielsen 1982,
1983) have argued from a model with a random action breaking translational invariance, that
gauge groups not having a connected non-trivial centre are likely to break down spontaneously
so that the gauge particles (the analogues of the photon) olbtain masses. By arguments of this
type about what properties of a gauge group endanger it by a breakdown, we tend to favour
that at low energies one should find the gauge group S(U(2) x U(3)) (of special i.e. unit deter-
minant 5 x 5 matrices composed of U(2) and U(3) matrices) which s just the one of the standard
model to which one has arrived by more phenomenological considerations.

Froggatt & Nielsen (19794, 19795, 1981) have in a random model for mass matrices obtained
very inaccurate predictions of, for example the ratio

In (m./m,)/In (m,/me) ~ 0.6 + 0.5,

where the masses of the three lightest charged leptons are denoted m, (electron), m, (muon),
and m, (tau lepton). It agrees almost too well with experiment.

Recently we have been speculating on how to obtain geometry out of a (random) gauge theory
model. Fu Ying Kai and I found that in an anisotropic lattice electrodynamics it is possible to
produce what we call a layered phase. Thisis a state in which a charged particle would be able to
move only along some layers but not across them. The idea is then that it is the layers (or one
layer curled up) that make up the four dimensional geometry we know, the geometry outside
being unimportant. Also we hope then to ‘derive’ a principle of locality which says that there is
no direct interaction except over very small distances: no action at long distances. This also
looks promising.

5. CONCLUDING REMARKS

It seems that there are indeed some ways of deriving many of the most typical features of what
we know today from more random fundamental laws of nature, e.g. gauge symmetry, Lorentz
invariance, linearity of the Schrédinger equation (in jeopardy though), discrete symmetries,
and (8 + 1)-dimensionality space~time. We may even get some information on which gauge
group to expect and some very crude information on lepton and quark masses, and Gabibbo
angles.

The picture of random dynamics — which we find somewhat promising — may be said to be
roughly analogous to the development of species of animals and vegetation throughout the
history of the Earth. Also — for me at least — the Darwinian ideas of development of species have
provided inspiration for the presently described work.

The analogy should be this: the geological time for the development of life corresponds to the
logarithm of the length scale (or to minus the logarithm of the energy and momentum scale) for
physics. The various geological periods may correspond to various branches of physics, many of
which are probably yet to be discovered. The idea of random dynamics that various features —
symmetries, linearity properties, etc. — arise at various levels corresponds to the various inven-
tions or development of organs or mechanisms such as the RNA amino acid code and production
system, muscles, brain, and social behaviour. Maybe there is even a correspondence in that the
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development of life out of non-living chemistry (and physics) is as especially speculative as the
development of physics out of chaotic fundamental laws of nature may also seem.

It is a pleasure to thank all my collaborators whose work I have presented and Zheng Hai-
Bin for finding the reference to Ranft (1983). P. Mansfield is thanked for help in improving
the English.

REFERENCES

Antonianidas, 1., Iliopoulos, J. & Tamaros, T. N. 1983 On the infrared stability of gauge theories. LPTENS 83/13.

Aronson, S. H., Bock, G. J., Cheng, Hai-Yang & Fischbach, E. 1982 Phys. Rev. Lett. 48, 1306.

Banks, T. & Rabinovi¢i, L. 1979 Nucl. Phys. B 160, 349.

Bjorken, J. & Drell, S. 1964 Relativistic quantum mechanics, Appendix A. New York: McGraw-Hill.

Brene, N. & Nielsen; H. B. 1982 Why the standard model group should have a connected centre. Niels Bohr Institute
preprint NBI-HE-82-29.

Brene, N. & Nielsen, H. B. 1983 Standard model group — survival of the fittest. Niels Bohr Institute preprint NBI-
HE-83-04. (Submitted to Nucl. Phys. B.)

Chadha, S. & Nielsen, H.B. 1982 Lorentz invariance as a low energy phenomenon. Niels Bohr Institute preprint
NBI-HE-82-42.

Eddington, A. 1946 Fundamental theory. Cambridge University Press.

Fradkin, E. & Shenker, S. 1979 Phys. Rev. D 19, 3682.

Froggatt, C. D. & Nielsen, H. B. 1979a Nucl. Phys. B 147, 271.

Froggatt, C. D. & Nielsen, H. B. 19795 Nucl. Phys. B 164, 114.

Froggatt, C. D. & Nielsen, H. B. 1981 Phys. Lett. B 106, 487.

Forster, D., Ninomiya, M. & Nielsen, H. B. 1980 Phys. Lett. B 94, 135.

Iliopoulos, J. 1981 Unification. In Particle physics 1980 (ed. J. Andri¢, J. Dadic & N. Zovko), p. 1. Amsterdam:
North-Holland.

Iliopoulos, J., Nanapoulos, D. V. & Tamaros, T. N. 1980 Phys. Lett. B 94, 141.

Lehto, M., Ninomiya, M. & Nielsen, H. B. 1982 Phys. Lett. B 115, 129.

Nielsen, H. B. 1977 In Fundamentals of quark models (ed. J. M. Barbour & A. T. Davies), p. 528. Glasgow:
University of Glasgow.

Nielsen, H. B. 19782 Gamma 36, 3.

Nielsen, H. B. 19785 Gamma 317, 35.

Nielsen, H. B. 1981 In Particle physics 1980 (ed. I. Andri¢, I. Dadic & N. Zovko), p. 125. Amsterdam: North-
Holland.

Nielsen, H. B. 1983 In Random dynamics (Proceedings of Arctic Physics Summer School, Akdslompo, Finland). Berlin:
Springer.

Nielsen, H. B. & Picek, I. 1982a Phys. Lett. B 114, 141,

Nielsen, H. B. & Picek, I. 19825 Nucl. Phys. B 141, 153.

Ninomiya, M. & Nielsen, H. B. 1979 Nucl. Phys. B 141, 153.

Ranft, F., Kripfganz, F. & Ranft, G. 1983 Phys. Rev. D 28, 360.

Shenker, S. 1980 Symmetry breaking operators in gauge theories. Research plan sent to Department of Energy.

Slater, N. B. 1957 The development and meaning of Eddington’s * fundamental theory’. Cambridge University Press.

Weinberg, S. 1979a Phys. Rev. Lett. 43, 1566.

Weinberg, S. 1979b Phys. Rev. Lett. 43, 1571.

Weinberg, S. 1981 In The second workshop on grand unification (ed. J. P. Leveille, L. R. Sulak & D. G. Unger),
p- 297. Basel: Birkhauser.

Weinberg, S. 1982 Phys. Rev. D 26, 287.

Zee, A. & Wilczek, F. 1979 Phys. Rev. Lett. 43, 1571.

Discussion

J. G. Tavror (Department of Mathematics, King’s College London, Strand, London WC2R 2LS, U.K.).
There seems to be considerable arbitrariness in Dr Nielsen’s talk in spite of his claim to obtain
much from few assumptions. In particular he uses a regular lattice, with only one lattice
spacing. A more general approach would be to use a lattice with many spacings, or even a
random lattice. Yet in the latter case recent work by Saclay (C. Itzykson and his collaborators)
has shown that for the free field (in one dimension) the spectrum of states does not have a

[ 61]


http://rsta.royalsocietypublishing.org/

Y | \

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

a
R

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

272 H. B. NIELSEN

natural cut-off. Nor is the problem of fermions easy to resolve; recent questions on the de-
generacy of massless fermions on the lattice are apparently completely open on such lattices.
Surely these problems have to be satisfactorily analysed before any claims to having constructed
‘random dynamics’ in a general way can be substantiated.

H. B. Niersen. I thank Professor Taylor for calling my attention to work by C. Itzykson,
T. D. Lee et al. He is certainly right that the lattice electrodynamics model without gauge
symmetry which I described has several arbitrary features such as the lattice being a regular
hypercubic one. The excuse for this is that it is one of the basic ideas in the project of random
dynamics that the detailed features of a model are not essential for what results in the limit of,
say, low energy, to which we have experimental access today, so we hope that the arbitrary
features are not essential.

For instance it is almost certainly not important whether the lattice is a simple cubic one or
whether we would take some more complicated but still regular lattice structure. That we took
the lattice to be a regular repetition of the same unit is an assumption justified as a mild form
of the principle of translational invariance. That makes it less arbitrary, but of course, to
complete the random dynamics project we should then also provide a ‘derivation’ of trans-
lational invariance. This M. Lehto, M. Ninomiya and myself have attempted to do in a model
having a lattice the structure of which is dynamical and therefore normally highly irregular
due to quantum fluctuations.

It is correct that the problem of putting fermions on a lattice when they belong to a parity
non-invariant system of representations is a severe difficulty for random dynamics. This
difficulty with chiral fermions on a lattice is especially a problem for our understanding of
gauge invariance (the work which I treated in some detail). The reason for this being so severe
a problem is (1) that we need a cutoff to be taken seriously, preferably a lattice, and (2) we
obtain gauge invariance by definition, and therefore exactly, even at the lattice scale. With these
requirements we have no-go theorems (by M. Ninomiya and myself) that seem to leave no
way open for describing the phenomenology of parity violation by the weak interactions without
giving up other principles, such as locality, in a drastic manner.

The best way out might be to allow the quarks and leptons to be bound states of some system
of fermions belonging to representations with equally many species of right and left handed
Weyl particles. Maybe also the openness of the fermion problem on the Itzykson-Lee type
irregular lattice — which Professor Taylor mentions — gives some hope that species doubling
might be avoided.

The problem of species doublers is presumably a general problem for any claim of taking an
ultraviolet cut-off seriously, and especially for us.
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